Biological Degradation of Taxol by Action of Cultured Cells on 7-Acetyltaxol-2"-yl Glucoside

Kei Shimoda,*¹ Katsuhiko Mikuni,² Kiyoshi Nakajima,³ Hatsuyuki Hamada,⁴ and Hiroki Hamada*⁵

¹Department of Pharmacology and Therapeutics, Faculty of Medicine, Oita University,

1-1 Hasama-machi, Oita 879-5593

²Ensuiko Sugar Refining Co., Ltd., 1-1-1 Fukuura, Kanazawa-ku, Yokohama 236-0004

³Tokyo Supply Ltd., 1-23-2 Toranomon, Minato-ku, Tokyo 105-0001

⁴National Institute of Fitness and Sports in Kanoya, 1 Shiromizu-cho, Kagoshima 891-2390

⁵Department of Life Science, Faculty of Science, Okayama University of Science,

1-1 Ridai-cho, Okayama 700-0005

(Received December 20, 2007; CL-071413; E-mail: shimoda@med.oita-u.ac.jp, hamada@das.ous.ac.jp)

Biodegradation pathways of taxol in cultured cells of *Synechocystis* sp. PCC 6803, *Synechococcus* sp. PCC 7942, *Marchantia polymorpha*, *Nicotiana tabacum*, and *Glycine max* were investigated using a water-soluble taxol derivative, 7-acetyltaxol-2"-yl glucoside, as the substrate. Although cyanobacteria, *Synechocystis* sp. PCC 6803 and *Synechococcus* sp. PCC 7942, and a lower plant, *M. polymorpha*, catalyzed the epimerization at 7-position of taxol skeleton, no epimerization occurred with higher plants, *N. tabacum* and *G. max*. On the other hand, *Synechocystis* sp. PCC 6803, *Synechococcus* sp. PCC 7942, *M. polymorpha*, and *N. tabacum* catalyzed hydrolysis at 13-position of taxol to give baccatin III and 10-deacetyl baccatin III. Both cyanobacteria cells also deacetylated 7-epi-baccatin III at its 10-position. *M. polymorpha* and *G. max* deacetylated at 10-position of taxol.

Taxol, a diterpenoid from the Pacific Yew Taxus brevifiolia, is one of the most important anticancer drugs, and is used for treatment of ovarian, breast, and various other cancers worldwide. From the pharmacological point of view, the pathway of the biological degradation of taxol is interesting and important. However, little attention has been paid to the biological degradation of taxol by cultured cells, because it is hardly dissolved in aqueous solution. Use of an ester-linked taxol-sugar conjugate, which is higher water-soluble than taxol and would be hydrolyzed by hydrolytic enzymes in the living cells, is a new approach to biodegradation research of taxol. Additionally, taxol-sugar conjugates have attracted much attention clinically, because of their potential to be useful prodrugs.² The biodegradation pathway of taxol-sugar conjugates is also important. Herein, we report the biodegradation of taxol with cultured cells of Synechocystis sp. PCC 6803, Synechococcus sp. PCC 7942, Marchantia polymorpha, Nicotiana tabacum, and Glycine max using a water-soluble taxol derivative, 7-acetyltaxol-2"-yl glucoside, as the substrate.

Biotransformation of 7-acetyltaxol-2"-yl glucoside (1)³ was examined by incubating 1 with each cell cultures.⁴ Yield of the products was calculated on the basis of the peak area from HPLC using the calibration curves prepared by the HPLC analyses of each compounds. The structures of the products were identified based on their HRFABMS, ¹H and ¹³C NMR, H–H COSY, C–H COSY, and HMBC data (Figure 1).

Biotransformation of **1** with cultured *Synechocystis* sp. PCC 6803 cells gave taxol (**2**, 7%), 7-*epi*-taxol (**4**, 2%), ⁵ the cytotoxicity of which is only slightly less than that of taxol, ⁶ baccatin III

Figure 1. Structures of substrate 1 and biotransformation products 2–8.

(5, 33%), 10-deacetylbaccatin III (6, 16%), 7-epi-baccatin III (7, 27%), and 10-deacetyl-7-epi-baccatin III (8, 10%) (Table 1). No products which retained the (glucosyloxy)acetyl (GOA) group at their 7-position were detected. These suggest that the GOA group of 1 was readily hydrolyzed to give taxol (2), and that other hydrolysis and epimerization products 4–8 were produced by the action of Synechocystis sp. PCC 6803 cells on 2. Feeding experiment of 7-epi-taxol (4) or baccatin III (5) established that 7-epi-baccatin III (7) was produced from both 4 and 5. These findings revealed that Synechocystis sp. PCC 6803 hydrolyzed 10-acetoxy group of baccatin III and 7-epi-baccatin III, and 13-TSC (taxol side chain) group of taxol skeleton, and that epimerization of taxol and baccatin III occurred at their 7-positions. No formation of ketone intermediates was found during the incubation period. Also Synechococcus sp. PCC 7942 converted 1 into 2 (31%), 4 (24%), 5 (23%), 6 (4%), 7 (15%), and 8 (2%).

In contrast, biotransformation of **1** by cultured cells of liverwort *M. polymorpha* or higher plants, *N. tabacum* and *G. max*, was examined. Biotransformation was performed under illumination (4000 lux, *M. polymorpha*) or in the dark (*N. tabacum*

Table 1. Biotransformation of 7-acetyltaxol-2"-yl glucoside (1) by cultured cells

Cell line	Products/%						
	2	3	4	5	6	7	8
Synechocystis sp. PCC 6803	7	0	2	33	16	27	10
Synechococcus sp. PCC 7942	31	0	24	23	4	15	2
M. polymorpha	17	10	8	2	8	0	0
N. tabacum	25	0	0	11	10	0	0
G. max	16	6	0	0	0	0	0

and *G. max*) in freshly prepared medium (MSK-2 medium for *M. polymorpha* and MS medium for *N. tabacum* and *G. max*). After the 7 day-incubation of **1** with cultured *M. polymorpha* cells, five products **2** (17%), **3** (10%), **4** (8%), **5** (2%), and **6** (8%) were isolated. Feeding experiment of 10-deacetyltaxol (3) or baccatin III (5) revealed that 10-deacetylbaccatin III (6) was predominantly formed from **5** rather than **3**. On the other hand, cultured *N. tabacum* cells converted **1** into three products **2** (25%), **5** (11%), and **6** (10%). Biotransformation of **1** with *G. max* gave only two products **2** (16%) and **3** (6%). No epimerization occurred through the transformation with both *N. tabacum* and *G. max*. In the case of the biotransformation by these three cell cultures, a large amount of unreacted substrate **1** was recovered.

The results of this experiment revealed, for the first time, diverse biodegradation pathways of taxol in cultured cells by using a water-soluble taxol derivative, 7-acetyltaxol-2"-yl glucoside, as the substrate. Two cyanobacteria, Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7942, were able to catalyze hydrolysis at 13-position of taxol, deacetylation at 10-position of baccatin III and 7-epi-baccatin III, and epimerization at 7-position of taxol and baccatin III. Liverwort M. polymorpha could catalyze hydrolysis at 13-position of taxol, deacetylation at 10-position of taxol and baccatin III, and epimerization at 7-position of taxol. On the other hand, higher plants, N. tabacum and G. max, could not catalyze epimerization of taxol skeleton. Hydrolysis occurred at 13-position of taxol (N. tabacum), and 10-position of taxol (G. max) or baccatin III (N. tabacum). Further studies on the enzymes participating in the hydrolysis and epimerization of these taxoid compounds are now in progress.

References and Notes

- M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon, A. T. McPhail, J. Am. Chem. Soc. 1971, 93, 2325.
- Y. Luo, G. D. Prestwich, *Bioconjugate Chem.* 1999, 10, 755;
 Y. Luo, M. R. Ziebell, G. D. Prestwich, *Biomacromolecules* 2000, 1, 208.
- Coupling of 2'-TES ester of taxol with 2,3,4,6-tetra-Obenzylglucosyloxyacetic acid (1.2 equiv.) [EDCI, DMAP, CH₂Cl₂, rt] provided 7-acetyl-2'-TES-taxol-2"-yl 2,3,4,6tetra-O-benzylglucoside (99%), which was deprotected with Pd black in wet acetic acid to give 1 (98%). Spectral data for 1: HRFABMS: m/z 1096.3136 [M + Na]⁺; ¹H NMR (400 MHz, CD₃OD): δ 1.10 (3H, s, H-16), 1.16 (3H, s, H-17), 1.78 (3H, s, H-19), 1.82 (1H, m, H-6 β), 1.87 (3H, s, H-18), 2.02 (1H, dd, J = 15.2, 9.0 Hz, H-14a), 2.15 (3H, s, CH₃ in 10Ac), 2.21 (1H, dd, J = 15.2, 9.0 Hz, H-14b), 2.37 (3H, s, CH₃ in 4Ac), 2.59 (1H, m, H-6 α), 3.30–3.80 (8H, m, H-2", 2"", 3"", 4"", 5"", 6""), 3.90 (1H, d, $J = 7.2 \,\mathrm{Hz}, \; \mathrm{H}\text{--}3), \; 4.19 \; (3\mathrm{H}, \; \mathrm{m}, \; \mathrm{H}\text{--}7, \; 20), \; 4.75 \; (1\mathrm{H}, \; \mathrm{d}, \; \mathrm{H}\text{--}1)$ $J = 5.2 \,\mathrm{Hz}, \,\mathrm{H}\text{-}2'), \,4.92\text{-}4.95 \,(1\mathrm{H}, \,\mathrm{m}, \,\mathrm{H}\text{-}1'''), \,5.01 \,(1\mathrm{H}, \,\mathrm{d}, \,\mathrm{H})$ $J = 9.2 \,\text{Hz}, \text{ H-5}$), 5.60 (2H, m, H-2, 3'), 6.15 (1H, t, $J = 9.0 \,\mathrm{Hz}, H-13$, 6.21 (1H, s, H-10), 7.28 (1H, t, $J = 7.6 \,\text{Hz}$, p-H in Ph), 7.39–7.59 (9H, m, m-H in NBz, p-H in NBz, m-H in OBz, o-H in Ph, m-H in Ph), 7.66 (1H, t, $J = 7.6 \,\text{Hz}$, p-H in OBz), 7.85 (2H, d, $J = 8.2 \,\text{Hz}$, o-H in NBz), 8.11 (2H, d, $J = 8.2 \,\text{Hz}$, o-H in OBz);

- ¹³C NMR (100 MHz, CD₃OD): δ 11.3 (C-19), 14.7 (C-18), 20.7 (CH₃ in 10Ac), 22.2 (C-16), 23.1 (CH₃ in 4Ac), 26.7 (C-17), 34.2 (C-6), 36.3 (C-14), 44.5 (C-3, C-15), 57.1 (C-3'), 57.7 (C-8), 62.4 (C-6'''), 65.9 (C-2''), 71.4 (C-7, C-13), 72.1 (C-4'''), 73.6 (C-5'''), 74.1 (C-2'''), 74.8 (C-2'), 75.1 (C-3'''), 75.7 (C-2), 76.6 (C-10), 77.2 (C-20), 78.8 (C-1), 81.8 (C-4), 85.0 (C-5), 100.5, 100.6 (C-1'''), 128.6, 129.1, 129.7, 131.2, 132.5, 134.1, 134.5, 135.4, 139.8 (C-11, Ar-C in NBz, Ar-C in OBz, Ar-C in Ph), 142.1 (C-12), 167.6 (C=O in OBz), 170.0 (C=O in NBz), 170.9 (C-1''), 171.3 (C=O in 4Ac), 171.9 (C=O in 10Ac), 174.3 (C-1'), 203.1 (C-9).
- Typical biotransformation procedures were as follows. Prior to this experiment, 5 g (fresh weight) of mature cultured cells of cyanobacterium, Synechocystis sp. PCC 6803, was individually transplanted to 300-mL conical flasks containing 100 mL of freshly prepared BG-11 medium. The cultures were grown for 2 weeks on a rotary shaker (120 rpm) under illumination (4000 lux). A total of 0.03 mmol of a watersoluble taxol derivative, 1, was added to three 300-mL conical flasks (0.01 mmol/flask) containing the cultured cyanobacterium cells. The flasks were incubated at 25 °C for further 7 days on a rotary shaker (120 rpm) under illumination (4000 lux). After incubation, the cells and medium were separated by centrifugation at 10000 g for 5 min. The cells were extracted (×3) by homogenization in MeOH, and the extract was concentrated. The residue was partitioned between H₂O and CH₂Cl₂. The medium was extracted (×3) with CH₂Cl₂. The CH₂Cl₂ fractions were combined, concentrated, and purified by HPLC [column: YMC-Pack R&D ODS column $(150 \times 30 \text{ mm})$; solvent: MeOH–H₂O (13.7, v/v); detection: UV (227 nm); flow rate: 1.0 mL/min] to give products.
- Spectral data for product 4: HRFABMS: m/z 876.3207 $[M + Na]^+$; ¹H NMR (CDCl₃): δ 1.16 (3H, s, H-16), 1.21 (3H, s, H-17), 1.68 (3H, s, H-19), 1.81 (3H, s, H-18), 2.17 (3H, s, CH₃ in 10Ac), 2.25 (1H, dd, J = 15.4, 9.0 Hz, H-14a), 2.29 (1H, m, H-6a), 2.35 (1H, m, H-6b), 2.41 (1H, dd, J = 15.4, 9.0 Hz, H-14b), 2.51 (3H, s, CH₃ in 4Ac), 3.70 (1H, d, $J = 12.0 \,\text{Hz}$, H-7), 3.90 (1H, d, $J = 7.2 \,\text{Hz}$, H-3), 4.39 (2H, m, H-20), 4.81 (1H, d, $J = 3.0 \,\text{Hz}$, H-2'), 4.91 (1H, d, $J = 9.2 \,\text{Hz}$, H-5), 5.76 (1H, d, $J = 7.2 \,\text{Hz}$, H-2), 5.82 (1H, d, $J = 9.2 \,\text{Hz}$, H-3'), 6.25 (1H, t, $J = 9.2 \,\mathrm{Hz}$, H-13), 6.80 (1H, s, H-10), 7.35–7.58 (10H, m, m-H in NBz, p-H in NBz, m-H in OBz, o-H in Ph, m-H in Ph, p-H in Ph), 7.62 (1H, t, J = 7.6 Hz, p-H in OBz), 7.75 (2H, d, J = 8.2 Hz, o-H in NBz), 8.17 (2H, d, J = 8.2 Hz,*o*-H in OBz); ¹³C NMR (CDCl₃): δ 14.7 (C-18), 16.0 (C-19), 20.8 (CH₃ in 10Ac), 21.4 (C-16), 22.5 (CH₃ in 4Ac), 26.0 (C-17), 35.5 (C-14), 36.2 (C-6), 40.3 (C-3), 42.7 (C-15), 55.0 (C-3'), 57.7 (C-8), 72.5 (C-13), 73.2 (C-2'), 75.5 (C-2), 75.7 (C-7), 77.5 (C-20), 78.0 (C-10), 79.0 (C-1), 82.0 (C-4), 83.0 (C-5), 126.9, 128.5, 129.0, 129.2, 133.5, 133.7, 138.1, 139.6 (C-11, C-12, Ar-C in NBz, Ar-C in OBz, Ar-C in Ph), 167.0 (C=O in NBz), 167.3 (C=O in OBz), 170.0 (C=O in 10Ac), 172.3 (C=O in 4Ac), 173.0 (C-1'), 207.5 (C-9).
- 6 C. H. O. Huang, D. G. I. Kingston, N. F. Magri, G. Samaranayake, J. Nat. Prod. 1986, 49, 665.